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Abstract—This paper presents a new, supervised, hierarchical
clustering algorithm (SUHICLUST) for fuzzy model identifi-
cation. The presented algorithm solves the problem of global
model accuracy together with the interpretability of local models
as valid linearizations of the modeled nonlinear system. The
algorithm combines the merits of supervised, hierarchical algo-
rithms, which are based on heuristic tree-construction algorithms
together with the advantages of fuzzy product space clustering.
The high flexibility of the validity functions obtained by fuzzy
clustering combined with supervised learning results in an
efficient partitioning algorithm, which is independent of initial-
ization and results in a parsimonious fuzzy model. Furthermore,
the usability of SUHICLUST is very undemanding, because it
delivers in contrast to many other methods reproducible results.
In order to get reasonable results, the user only has to set either
a threshold for the maximum number of local models or a value
for the maximum allowed global model error as a termination
criterion. For fine-tuning, the interpolation smoothness controls
the degree of regularization. The performance is illustrated
on both analytical examples and benchmark problems from
literature.

Index Terms—Fuzzy model identification, fuzzy clustering,
supervised learning, hierarchical tree-construction

I. INTRODUCTION

A. Motivation

IN PRACTICE, data-driven models can be used for a
broad range of application fields, e.g. one-step-ahead pre-

diction, simulation, optimization, data mining, control and
fault detection. In this sense, for the purpose of identifying
nonlinear, static and dynamic processes the application of
Takagi-Sugeno neuro-fuzzy systems that employ local models
is very common. Hence, nonlinear relationships are emulated
with a definite number of local sub-models. However, widely
different strategies have been pursued for the partitioning of
the input space which determines the validity regions of the
local models. The model properties crucially depend on the
chosen strategy.

Once, the validity regions of the fuzzy model are deter-
mined, it is easy to efficiently estimate the parameters of the
local linear models by local or global least squares methods.
The decisive difference between all proposed algorithms to
construct local linear model structures is the strategy to
partition the input space, i.e., to choose the validity regions and
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consequently the parameters of the validity functions. There-
fore, in this contribution an efficient structure identification
algorithm is proposed that automatically finds a very flexible
input space partitioning such that the resulting fuzzy model is
a valid representation of the underlying process data.

B. Survey Over the Related Works

Many different approaches have appeared in the literature
relating to the design of fuzzy models, see e.g. [6] and [7]. To
date, the Gustafson-Kessel [33] or Gath-Geva [34] clustering
algorithms are the most popular partitioning strategies for
building local linear model networks. These algorithms are
applied for searching hyper-ellipsoids of equal or different
volumes in the input space or the product space, respectively.
Due to the high flexibility of the validity functions in size and
orientation the curse of dimensionality is a much lesser issue
than for most competing strategies. However, this comes at
the price of a reduced interpretability in terms of fuzzy logic,
because the multi-dimensional validity functions cannot be
projected to one-dimensional membership functions without
loosing modeling accuracy.

In the following, an overview about the popular literature
proposed for input space partitioning is given.

1) Partitioning based on fuzzy clustering: The use of fuzzy
clustering algorithms, in general, involves two major problems:
the algorithm is strongly dependent on the initialization and
requires prior knowledge about the number of clusters or
the number of local models, respectively. To overcome these
problems, a lot of efforts have been made in systematic design
approaches for fuzzy model identification [11], [12], [13] and
[14]. In [10] an iterative scheme of regression-based fuzzy c-
means clustering in the input-output space is proposed. The
fuzzy rules are obtained by a projection of these clusters
onto each of the problem dimensions. [9] uses fuzzy c-means
clustering to find an appropriate number of clusters in the
output space and then the projection is used to define the fuzzy
partition. The major problem with this approach is that the
relation between the input and the output space is not injective,
and usually there is more than one cluster in the input space
that corresponds to a cluster in the output space. Recently,
in [54] fuzzy c-means clustering with Gaussian membership
functions together with the application of local least squares
estimation is applied on modeling the nitrate concentration
in groundwater. [15] proposes a systematic methodology of
fuzzy logic modeling which applies fuzzy c-means clustering.
The algorithm is based on a validity index optimization which
is problematic, because no reliable validity index exists to
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solve the problem of optimal fuzzy clustering. The problem of
dimensionality is partially solved by using decomposed fuzzy
systems as proposed in [20] and by involving hierarchical
fuzzy systems as shown in [19]. Another hierarchical fuzzy-
clustering approach can be found in [51]. It is based on a
weighted fuzzy c-means algorithm. A neuro-fuzzy algorithm
which automatically defines the partitioning of the space and
the model parameters using recursive singular-value decom-
position is reported in [23] as an extension of the grid-
based mountain clustering method. A complete fuzzy systems
identification, known as subtractive clustering is proposed in
[24].

2) Fuzzy systems based on global optimization methods:
A straightforward idea is to simply optimize all parameters
of the validity functions. One drawback of this approach is
that the model complexity (number of validity functions =
number of local models) must be fixed beforehand. Further-
more, the number of parameters can become huge, especially
for high-dimensional input spaces. That is the reason why
global optimization methods are popular for this partitioning
approach. However, the main problem of this kind of model-
development tools is the high computational cost which causes
severe problems in terms of their applicability [5].

One of the most popular algorithm in this framework is the
ANFIS algorithm [21]. The idea of the adaptive neural-fuzzy
scheme ANFIS is to reduce the number of validity function
parameters by constraining them, e.g. to a grid structure. It is
used to find the global fuzzy model. The structure of the model
and the model parameters are usually estimated independently,
as proposed in [22], where the input domain is partitioned in
fuzzy subspaces.

In [12], [16], [52], [53] and [17] genetic algorithms are used
to find the appropriate structure and parameters of the fuzzy
model. An evolutionary programming algorithm is proposed
in [14] and a tabu search algorithm in [18] to define the fuzzy
model structure and parameters. Furthermore, examples for
some recent methods in this field can be found in [55], [41],
[42] and [43].

3) Evolving fuzzy systems: Evolving neuro-fuzzy systems
are able to online-adapt rule premises and rule consequents
parameters of a Takagi-Sugeno fuzzy system simultaneously.
DENFIS [44], eTS [46], FLEXFIS [47], SONFIN [48] and
SOFMLS [49] are recently popular candidates representing
this group of algorithms.

4) Heuristic tree-construction algorithms: Another possi-
ble way of partitioning the input-output space involves heuris-
tic tree-construction algorithms which include a supervised
learning paradigm. One idea to realize a tree construction is
a simple, axis-orthogonal partitioning strategy which results
in a fuzzy model. CART [25] and LOLIMOT [28], [29]
are popular algorithms in this field. The biggest advantage
of these methods is their very low computational effort,
because the structure parameters can be found via heuristical
methods. Therefore, it does not require time-consuming non-
linear optimization methods to obtain the partitioning.

An improvement of the axes-orthogonal approach is the
application of an axes-oblique partitioning strategy, because it
leads to parsimonious model structures that are well suited for

mapping high-dimensional relationships. Hinging hyperplanes,
firstly introduced in [26], can be used to realize this kind
of partition. Hinging hyperplanes are functions that look like
the cover side of a partly opened book. The direction of the
hinge is then optimized to fit the underlying data optimally.
[27] introduced hinging hyperplanes for piecewise local linear
models that are smoothed by interpolation functions. Efficient
construction algorithms that extend this idea are proposed in
[30] and [50].

C. Our Approach

Goal behind our work was the development of a modeling
approach that is well suited for the modeling of highly
nonlinear processes owing to high flexible validity functions.
The strengths of heuristic tree-construction algorithms like
LOLIMOT, namely the supervised learning strategy and the
incremental growing, are combined with the advantages of
product space clustering. Figure 1 illustrates the connection
of the new SUHICLUST algorithm to these approaches. Due
to the incorporation of the model error in the partitioning
procedure, the proposed algorithm is supervised. Additionally,
SUHICLUST contains unsupervised learning, because of the
local application of product space clustering. The model
complexity is incrementally increased and the algorithm will
stop, if the model error is small enough or the maximum
number of local models is derived.
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Fig. 1. SUHICLUST as a combination of the heuristic tree-construction
algorithm and product-space clustering. The parameters of the local models
are estimated with weighted least squares (WLS).

In contrast to many established methods, SUHICLUST
models are generated with an axes-oblique partitioning strat-
egy. The validity functions, normalized Gaussian basis func-
tions, are more flexible than, e.g., sigmoidal basis functions
and, therefore, especially good applicable for modeling nonlin-
ear relationships with many variables. Unsupervised learning
approaches mostly deliver non-reproducible results and are
possibly very sensitive to local minima or the distribution of
the training data. The model complexity has to be fixed a-
priori and the modeling result depends crucially on the chosen
number of clusters.
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An important aspect in the development of SUHICLUST
was its good usability. The algorithm must be easy to use,
i.e. the algorithm has to have as less tuning parameters for
the user to adjust as achievable. It is possible to generate
feasible modeling results only by setting either a threshold
for the maximum allowed global model error or by setting
the maximum number of rules or local models, respectively.
Additionally, the user can adjust the interpolation smoothness
between the local models. Due to the application of local,
weighted least squares estimation this is a powerful tool to
control the regularization of the model [37]. The algorithm
delivers reproducible modeling results which is a remarkable
advantage compared to other modeling schemes that produce
different results in each run of the algorithm.

The paper is organized as follows. Section II presents the
structure of Takagi-Sugeno fuzzy models. Section III compares
the attributes of clustering versus hierarchical tree-construction
algorithms. In Sect. IV the supervised, hierarchical cluster-
ing algorithm SUHICLUST is proposed and described in
detail. Section V describes a series of experiments where
SUHICLUST is compared with other recent algorithms. We
considered both analytical examples and the comparison with
results from the literature. Concluding remarks are given
Sect. VI.

II. TAKAGI-SUGENO FUZZY MODELS

Fuzzy models in Takagi-Sugeno form are very important
nonlinear approximators for nonlinear static functions and
nonlinear dynamic model approximation [7], [31] and [32].
This is mainly due to the transparency of the local linear
models and the transfer of the methods from the classical linear
control theory to the nonlinear world.

The output ŷ of the fuzzy model with nu inputs u =
[u1 u2 · · · unu]T can be calculated as the interpolation of
M local model outputs ŷi(·), i = 1, . . . , M , see Fig. 2,

ŷ =
M∑
i=1

ŷi(u)Φi(u) (1)

where the Φi(·) are called the normalized membership or
weighting functions. These normalized membership functions
describe the regions and the contribution of the local model
(LM) to the global fuzzy model output. The fuzzy model in
Eq. 1 realizes a set of M fuzzy rules where the Φi(·), i =
1, ...,M represent the rule premises and the ŷi(·), i = 1, ...,M
are the associated rule consequents. Continuous behavior
assumes a smooth transition between the local models, and
this implies a smooth normalized membership in the interval
[0, 1]. The normalized membership functions form a partition
of unity:

M∑
i=1

Φi(u) = 1 (2)

Thus, everywhere in the input space the contributions of all
the local models are equal to one.

In principle, the structure of the consequent part is of an
arbitrary type. The most common structures of the consequent
part are polynomials. Polynomials of degree 0 (constants)
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Fig. 2. Local model network: The outputs ŷi(·) of the local models (LMi)
are weighted with their normalized membership-function values Φi(·) and
summed up.

yield a fuzzy system with singletons. Polynomials of degree
1 (linear) provide local linear model structures, which is by
far the most popular choice. As the degree of the polynomials
increases, the number of local models required for a certain
accuracy decreases. Besides the possibility of transferring the
classical linear theory to the nonlinear world, the fuzzy models
with a linear consequent part seem to represent a good trade-
off between the required number of local models and the
complexity of the local models themselves. As a result of
all these facts, in the rest of this paper the consequent part
is given in linear, strictly speaking, affine form, as follows in
Eq. 3.

ŷi(u) = θi,0 + θi,1u1 + θi,2u2 + . . . + θi,nuunu (3)

One of the key features of TS fuzzy models is that the input
spaces for the local models and for the normalized membership
functions can be chosen independently. This means that Eq. 1
has to be extended to Eq. 4:

ŷ =
M∑
i=1

ŷi(x)Φi(z) (4)

with x = [x1 x2 · · · xnx]T spanning the consequent input
space and z = [z1 z2 · · · znz]T spanning the premise input
space. Graphically, this is presented in Fig. 3. This feature
enables the user to incorporate prior knowledge about the
strength of the nonlinearity from each input to the output into
the model structure. Or conversely, the user can draw such
conclusions from a black-box model that has been identified
from the data.

Especially for dynamic models, where the model inputs
include delayed versions of the physical inputs and outputs,
the dimension nx becomes very large in order to cover all
the dynamical effects. In the most general case (universal
approximator) this is also true for nz. However, for many
practical problems a lower-dimensional z can be chosen,
sometimes even one or two scheduling variables can yield
sufficiently accurate models. This feature can substantially
weaken the curse of dimensionality.
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Fig. 3. For TS fuzzy models the inputs can be assigned to the premise and/or
consequent input space according to their nonlinear or linear influence on the
model output.

If the normalized membership functions are determined
once, it is easy to efficiently estimate the parameters of
the local linear models θij by local or global least-squares
methods. The decisive difference between all the proposed
algorithms for constructing local linear model structures is the
strategy of the input-space partitioning spanned by z, i.e., to
choose the validity regions and consequently the parameters
of the validity functions. This strategy determines the key
properties of both: the construction algorithm and the finally
constructed model.

An example of a fuzzy model with three local models (LMs)
and the corresponding normalized membership functions is
shown in Fig. 4.
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Fig. 4. Local model network. Local linear models (top) and normalized
membership functions (bottom).

III. CLUSTERING VERSUS HIERARCHICAL

TREE-CONSTRUCTION

In this section the basic ideas of two conceptually different
space-partitioning paradigms are given: the clustering and
the hierarchical tree-construction algorithms. Some of the
advantages and drawbacks of each approach are discussed.

Many clustering algorithms focus on the product space that
is jointly spanned by the inputs and the output. In the case
of product-space clustering the consequent input space and
the premise input space coincide. This means that the data
set used in the clustering procedure consists of the inputs
and the output. Unfortunately, clustering algorithms are mostly
restricted to have only one single output dimension. However,
in the literature solutions to this problem are already proposed.

For example, in [8] Gustafson-Kessel clustering for MIMO
systems is introduced.

The main clustering algorithms that are usable in design-
ing fuzzy control models are presented in [6]. The most
commonly used algorithms are Gustafson-Kessel (GK) [33],
Gath-Geva (GG) [34] and the extended Gath-Geva algorithm
proposed in [5]. The cluster is usually defined as its center
and the fuzzy covariance matrix. The fuzzy center matrix
C = [c1, ..., ci, ..., cM ] and ci, i = 1, ...,M stands for the
center of the i-th fuzzy cluster ci = [ci,u1 , ..., ci,unu

, ci,y]T

in the product space. The fuzzy covariance matrix of the i-th
fuzzy cluster Σi ∈ R

(nu+1)×(nu+1) is defined as follows:

Σi =
N∑

k=1

Φ2
i (z(k)) (z(k) − ci) (z(k) − ci)

T (5)

where Φi(z(k)) defines the normalized membership degree
of the data vector z(k) to the i-th cluster. The data vector
is defined as z(k) =

[
uT (k) y(k)

]T
, k = 1, ..., N . The

dimension of the data vector z is nz = nu + 1. The fuzzy
covariance matrix defines the directions and the variability of
the data in the input-output space. With the application of
singular-value decomposition the fuzzy covariance matrix is
decomposed as will be stated next:

Σi = PiΛiPT
i (6)

where Pi ∈ R
(nz)×(nz) stands for the matrix of eigenvectors

Pi = [pi,1,pi,2, . . . ,pi,nz] and Λi ∈ R
(nz)×(nz) for the

matrix of eigenvalues Λi = diag(λi,j), j = 1, ..., nz. Trying
to find the local linear models that will describe the nonlinear
process given by the data set means that one has to find the
appropriate number of clusters and their centers to have the
smallest normalized eigenvalues of all the clusters smaller than
a certain threshold Δ. This threshold is described with

λi,nz

trace(Λi)
< Δ i = 1, ...,M (7)

Usually, the threshold Δ is chosen to be equal to 0.05. This
means that 5 percent of the data variability is neglected. The
vector in the direction of the neglected data pi,nz is normal
to the local hyperplane described in the vector equation form
as:

(ri − ci)
T · pi,nz = 0, i = 1, ...,M (8)

In particular, the GK algorithm is able to discover local
hyperplanes in the input-output space by forming ellipsoids
that can be calculated from the fuzzy cluster center and the
fuzzy covariance matrix [7]. Due to the high flexibility of the
normalized membership functions, in size and orientation, the
problem of dimensionality is a much smaller issue than for
most competing strategies.

The nature of the GK algorithm, which initializes the
partitioning matrix randomly, makes the direct use of this
algorithm sometimes difficult. The randomized initialization
does not enable a unique solution in all cases and when a
very small threshold Δ is used, this can cause the problem of
termination. Another disadvantage is the unknown number of
fuzzy clusters. The algorithm does not converge or gives very
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bad results because of the singularity of the fuzzy covariance
matrices, if the data set has some sparse regions.

The second partitioning paradigm that is presented here
is the heuristic tree search algorithm, which is given in the
literature [25]. Based on this idea, many similar partitioning
strategies are proposed in the literature [28], [35], [36]. The
key idea is to incrementally subdivide the input space using
axes-orthogonal cuts. Besides their simplicity, the strict sep-
aration between the rule premises and the rule consequents
and their low computational demand, one major advantage is
their easy interpretability in the sense of fuzzy logic. The
axes-orthogonal partitioning always allows a projection of
the normalized membership regions to the one-dimensional
input variables. Their main drawback inherently lies in the
partitioning technique, which does not give a parsimonious
fuzzy model in the sense of the number of local models.
This becomes more and more important and problematic by
increasing the dimensionality of the premise input space.

Both of the strategies yield flat models. Even if the algo-
rithm is hierarchically organized, the constructed fuzzy model
itself is flat in the sense that all the normalized membership
functions Φi(·) can be calculated in parallel. This is an
important feature, if the fuzzy model really should be realized
in hardware or using some parallel computers.

The heuristic tree-construction algorithms offer a number
of attractive features. Their only major shortcoming is their
sensitivity to the problem of dimensionality as a consequence
of the restriction of axes-orthogonal splits. A fusion with fuzzy
clustering algorithms gives an algorithm that can overcome
this drawback. The usage of highly flexible normalized mem-
bership functions obtained by fuzzy clustering enables the
algorithm to overcome the problem of dimensionality. This
flexibility is a consequence of the fuzzy covariance matrix
that allows an arbitrary orientation and size of the clusters in
the input-output space.

IV. SUPERVISED HIERARCHICAL CLUSTERING

The SUHICLUST (SUpervised HIerarchical CLUSTering)
is a fusion of the unsupervised fuzzy clustering algorithm
and the supervised hierarchical tree-construction algorithm. It
combines the advantages of both algorithms. The main features
of this fuzzy model construction algorithm are:

• Incremental: In each iteration an additional local model
is generated.

• Splitting: In each iteration the local model with the worst
local error measure is split into two submodels. The
procedure of splitting is shown in Fig. 5.

• Local least squares: The parameters of the local mod-
els are locally estimated using a weighted least-squares
method. This is computationally extremely cheap and
introduces a regularization effect, which increases the
robustness [37].

• Adaptive resolution: The smoothness of the local model
interpolation depends on the fuzzy covariance matrix
obtained by fuzzy clustering and therefore on the size
of the normalized membership regions. The smaller the
normalized membership regions are, the less smooth the
interpolation will be.

• Split optimization: The application of the Gustafson-
Kessel [33] fuzzy clustering in the product space deter-
mines the new split in the input space.

• Nested optimization: After an evaluation of the new split
by fuzzy clustering, the parameters of the two involved
local models are newly estimated by a local, weighted
least-squares method.
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Fig. 5. Operation of the SUHICLUST structure search algorithm in the first
four iterations for a two-dimensional input space.

To optimize the splitting parameters (fuzzy covariance ma-
trix), Gustafson-Kessel fuzzy clustering is used as a nonlinear
optimization technique. The data points that correspond to the
local model that is going to be split are taken as the clustering
data. The normalized membership values classify the data.
Each time after the generation of two new local models, two
local, weighted least-squares estimations are carried out in
order to optimize the local model parameters of the two newly
generated local models.

A. SUHICLUST algorithm

A detailed description of the SUHICLUST algorithm will
be given next. Let the (N × nu + 1)-dimensional data set of
measurements be denoted as follows:

Z̃ =

⎡
⎢⎢⎢⎣

ũ1(1) · · · ũnu(1) ỹ(1)
ũ1(2) · · · ũnu(2) ỹ(2)

...
. . .

...
...

ũ1(N) · · · ũnu(N) ỹ(N)

⎤
⎥⎥⎥⎦ (9)
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The measured data set can also be expressed as z̃(k) =
[ũ(k) ỹ(k)]T , k = 1, ..., N and the vector of input mea-
surements at the time instant k is described by ũ(k) =
[ũ1(k) ũ2(k) · · · ũnu(k)]T , k = 1, ..., N .

The data matrix is centered and scaled and the normalized
data matrix Z is then described as:

Z =

⎡
⎢⎢⎢⎣

u1(1) · · · unu(1) y(1)
u2(2) · · · unu(2) y(2)

...
. . .

...
...

u1(N) · · · unu(N) y(N)

⎤
⎥⎥⎥⎦ (10)

where the elements of the data matrix are defined with
uj(k) = ũj−muj

ũjMAX
, j = 1, ..., nu, k = 1, ..., N , y(k) =

ỹ−my

ỹMAX
, k = 1, ..., N , where muj

= 1
N

∑N
i=1 ũj(i), j =

1, ..., nu and my = 1
N

∑N
i=1 ỹ(i) and where ũjMAX

=
maxk (|ũj(k) − muj |) , j = 1, ..., nu and ỹMAX =
maxk (|ỹ(k) − my|). The normalized data set is also presented
with the data vectors z(k) = [u(k) y(k)]T , k = 1, ..., N
and the vector of normalized input measurements at the time
instant k, described by u(k) = [u1(k) u2(k) · · · unu(k)]T ,
k = 1, ..., N .

In the first step of the SUHICLUST algorithm, the covari-
ance matrix Σ0 of the data Z is computed. The covariance
matrix is described with:

Σ0 =
1

N − 1
ZT Z (11)

The unit eigenvectors and the corresponding eigenvalues of
the data covariance matrix Σ0 are calculated using singular-
value decomposition. The eigenvalues of the covariance ma-
trix Σ0 represent the variances of the data matrix Z in
the direction of the corresponding eigenvectors. With c0 the
center of the measured data set is denoted, where c0 =
[mu1 . . . munu

my]T .
By using the singular-value decomposition from Eq. 6 a

matrix of eigenvectors and eigenvalues is obtained. The main
direction of the data expansion is the direction with the largest
eigenvalue λ01, and this is denoted by the main eigenvector
p01. This means that the variance σ2

0 around the center of the
data (mean of the data) in the direction of the main eigenvector
equals λ01. The initial centers of the clusters v11 and v12 for
the centered data set Z are defined as follows:

v11 = −δδδ1 (12)

v12 = δδδ1

where δδδ1 defines the main eigenvector scaled with the cor-
responding standard deviation to capture the majority of the
data:

δδδ1 = σ0p0

With the deterministic procedure of calculating the unit
eigenvector and the corresponding standard deviation by using
singular-value decomposition, the initial position of the cluster
centers is directed. The initial centers are placed away from
the mean value of the measured variables c0 to embrace the
majority of the data matrix Z in the direction of the data
expansion.

The data matrix Z and the initial cluster centers v11, v12

are the inputs to the Gustafson-Kessel algorithm, which results
in two cluster centers c1, c2 (M = 2) and in the fuzzy
covariance matrices Σ11, Σ12.
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Fig. 6. Projection of clusters (top) from the product space to the input space
leads to membership functions (bottom).

In the next step, the parameters of the local linear models
are calculated. In order to project the clusters obtained by
the Gustafson-Kessel algorithm from the product space to
the input space, the cluster dimension of the output y is
kept constant at the corresponding cluster-center value ci,y .
Therefore, the cluster rotation in the output dimension is
neglected. Fig. 6 illustrates this using an example with one
input z1 and one output y. The two cluster projections μi

are generated by slicing the clusters at their output center
coordinate ci,y .

The distance di(k) from a data point k to each center
ci = [ci,1 ci,2 · · · ci,nu ci,y]T is calculated by using the fuzzy
covariance matrix Σi, which scales and rotates the axes:

d2
i (k) = (z(k) − ci)

T Σ−1
i (z(k) − ci) (13)

The fuzzy covariance matrix Σi has a symmetric shape and
is of size (nu + 1 × nu + 1), if one output is applied:

Σi =

⎡
⎢⎢⎢⎣

σ2
1,1 σ2

1,2 · · · σ2
1,nu+1

σ2
2,1 σ2

2,2 · · · σ2
2,nu+1

...
...

. . .
...

σ2
nu+1,1 σ2

nu+1,2 · · · σ2
nu+1,nu+1

⎤
⎥⎥⎥⎦

i

(14)

with σ2
k,l = σ2

l,k ∀ k, l = 1, . . . , nu + 1. The inverse is
calculated using the Moore-Penrose pseudo-inverse that is well
suited, if the fuzzy covariance matrices are ill conditioned.

The membership functions μi(·) of a Gaussian basis func-
tion network are given by:

μi (z(k)) = e−αd2
i (k) (15)

where α ≥ 1 is a factor that defines the smoothness of
the Gaussian functions μi(z(k)) > 0 and consequently the



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON FUZZY SYSTEM, VOL. X, NO. Y, APRIL 2011 7

sharpness of the normalized membership functions Φi(z(k)),
i.e., the normalized Gaussian functions.

To achieve a partition of unity the membership functions
have to be normalized to obtain the normalized membership
functions:

Φi(z(k)) =
μi(z(k))

M∑
j=1

μj(z(k))
(16)

Once the fuzzy covariance matrices are determined, i.e.,
the partitioning of the input space for the rule premises is
accomplished, the parameters of the local linear models, i.e.,
the parameters of the rule consequents, can be estimated with
the weighted least-squares (WLS) method.

A new set Zi, i = 1, ...,M is formed for each cluster from
the data set Z, such that it satisfies the criteria:

Φi(z(k)) > 0 (17)

The set Zi is defined as Zi = {zi(k)} where Φi(zi(k)) >
0, k = 1, ..., Ni and where Ni stands for the number of data
rows from Z that fulfill the criteria in Eq. 17. The data set
Zi together with the normalized membership function weights
Φi(zi(k)) correspond to the i-th cluster.

The parameters of the i-th local linear model are ob-
tained to optimally approximate the output variable yi(k) =
y(k)Φi(zi(k)), i.e., minimize the loss function Ji defined in
Eq. 18 using the WLS method.

Ji =
Ni∑

k=1

(
yi(k) − (θT

i ui(k) + θi0

)
Φi (zi(k))

)2
(18)

for i = 1, ...,M and where θi and θi0 are the parameters of
the local linear model that approximate the i-th cluster data
set Zi. The application of the WLS method delivers the nx+1
unknown parameters of the i-th local linear model θ̂i and θ̂i0.
This means that the approximation of the output variable ŷi(k)
of the i-th cluster equals:

ŷi(k) = θ̂T
i ui(k) + θ̂i0, i = 1, ...,M, k = 1, ..., Ni (19)

The quality of the local linear model that approximates the
data of the i-th cluster is estimated as the relative standard
deviation σqi of the approximation error. This local error
measure is given as follows:

σ2
qi =

1
Ni − 1

Ni∑
k=1

ε2i (k)
σ2

yi

(20)

where

εi(k) = yi(k) −
(
θ̂T

i ui(k) + θ̂i0

)
Φi (zi(k))

with σ2
yi

= 1
Ni−1

∑Ni

k=1(yi(k) − myi
)2 and myi

=
1

Ni−1

∑Ni

k=1 yi(k).
In further iterations the cluster with the largest relative

standard-deviation σqi, has to be splitted into two clusters
and each is modelled by two new, local linear models. The
procedure is repeated until a suitable approximation is reached.

The initialization of the new cluster centers is made in the
following way:

vi1 = ci−1 + δδδi

vi2 = ci−1 − δδδi (21)

where δδδi = σipi,1. A graphical representation of the i-th
iteration of the splitting procedure is given in Fig. 7.
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| |=�
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Fig. 7. A graphical representation of the i-th iteration of the splitting
procedure.

The centers of the clusters ci and the fuzzy covariance
matrices Σi, i = 1, ...,M are re-transformed to the measured
data set and are denoted as c̃i and Σ̃i. This means that the
centers of the fuzzy clusters for the measured data set are now
defined as:

c̃i = ci + c0, i = 1, ...,M (22)

and the fuzzy covariance matrices are rescaled with:

Σ̃i = Σi · T (23)

where T stands for

T =

⎡
⎢⎢⎢⎣

m2
u1

mu1mu2 · · · mu1munu

mu1mu2 m2
u2

· · · mu2munu

...
...

. . .
...

mu1munu
mu2munu

· · · m2
unu

⎤
⎥⎥⎥⎦ (24)

The re-transformed centers of the clusters and their fuzzy
covariance matrices represent, in a way, the model of the
process that results in the measured data set Z̃. A more
transparent and usable form of the model is the parametric
fuzzy model defined by θ̂i and θ̂i0, i = 1, ...,M . This
type of model is used to calculate the model output variable.
The procedure is described next. First, the distances of the
measured samples to the centers of the clusters are calculated
as:

D2
i (k) =

([
ũT (k) c̃iy

]T − c̃i

)T

Σ̃−1
i

([
ũT (k) c̃iy

]T − c̃i

)
where Σ̃i, i = 1, ...,M stands for the de-normalized fuzzy
covariance matrix. Then, the normalized membership values
are defined with:

Φi(ũ(k)) =
μi(ũ(k))

M∑
j=1

μj(ũ(k))
, k = 1, ..., N (25)
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where μi (ũ(k)) = e−αD2
i (k).

The membership values for the whole data set Z̃ and the
data set itself are used to estimate the parameters of the model
θ̂i and θ̂i0, i = 1, ...,M using the local WLS algorithm.

Finally, the whole model output is computed as follows:

ŷ(k) =
M∑
i=1

(
θ̂T

i ũ(k) + θ̂i0

)
Φi(ũ(k)), k = 1, ..., N (26)

In the next step, the quantitative validation of the obtained
model is calculated using the normalized root-mean-squared
error between the measured output and the approximated
model output (NRMSE):

NRMSE(ỹ, ˆ̃y) =

√√√√∑N
k=1(ỹ(k) − ˆ̃y(k))2∑N

i=1(ỹ(i) − ȳ)2

ȳ =
1
N

N∑
k=1

ỹ(k) (27)

where ỹ and ˆ̃y stand for ỹ = [ỹ(1), . . . , ỹ(N)]T and ˆ̃y =[
ˆ̃y(1), . . . , ˆ̃y(N)

]T
, respectively.

If the obtained NRMSE does not fulfill the criteria given by

NRMSE(ỹ, ˆ̃y) < NRMSEmax

where NRMSEmax stands for the maximum allowed value,
the whole procedure is repeated until the criteria is reached or
until the maximal number of local linear models is reached.

The pseudo-code of SUHICLUST is presented in Table I
where the whole algorithm is divided into 15 steps, from
the initialization to the step where the approximation of the
output variable is calculated. The algorithm has one repeating
sequence. The repeat-until loop from step 5 to step 15 is
terminated when either the number of clusters becomes equal
to the maximum number of possible clusters or the algorithm
satisfies the NRMSE criteria.

V. BENCHMARK STUDY

The advantages of the supervised hierarchical clustering
are shown in the following illustration examples. Several
different comparisons are made to show the potential of this
algorithm. For the experiments, SUHICLUST is compared to
the following toolboxes: LOLIMOT [29], Gustafson-Kessel
(GK) product space clustering [33], LOLIMOT GP / GP-V
[41], FMID [6], ANFIS [21], DENFIS [44] and the modified
Gath-Geva (GG) clustering algorithm proposed in [5]. For the
comparisons with LOLIMOT GP / GP-V and the modified GG
algorithm existing results from the literature are used. For all
investigations with SUHICLUST, GK clustering, LOLIMOT,
FMID, ANFIS and DENFIS the default toolbox parameter
values are applied. DENFIS is used in offline mode with the
high-order Takagi-Sugeno-type fuzzy rule set.

A comprehensive benchmark study is made with five dif-
ferent examples:

1) Analytical example I: The aim of the first example is
to illustrate the very flexible partitioning capabilities of
SUHICLUST. This is done on two analytical functions
with a two-dimensional input space.

2) Analytical example II: In this example the advantages
of SUHICLUST are shown compared to the axes-
orthogonal partitioning strategy LOLIMOT and product
space clustering for highly non-linear data sets with
more than two inputs.

3) Pharmaceutical data set: This is a highly non-linear
example with two inputs and the presence of noise.

4) Modeling an engine characteristic map: As an example
taken from the literature, SUHICLUST is compared to
a state-of-the-art-method, LOLIMOT GP / GP-V, that
can be seen as an extension of the classical LOLIMOT
algorithm. In this contribution, the partitioning is done
with the application of genetic programming. Although
the data set consists only of two inputs, the modeling
exercise is challenging, because the data has sparse
regions that can cause overfitting.

5) Comparison on Automobile MPG benchmark: As a
last example the well known Automobile MPG data
set is used to show the generalization performance of
SUHICLUST. We compared the results with the findings
in [5].

The first two examples are investigated without the influence
of noise in order to compare the key characteristics of the
different algorithms, namely the flexibility of the partitioning,
the computation time and the applicability for a higher-
dimensional problem with a strong non-linearity. Next, the
remaining examples show the good applicability for real data
sets with the presence of noise.

A. Analytical example I

As a first example, the benchmark problem Mars1, which
is also used in [38] and [39], is presented. The function that
is modeled is the following:

y =
2e(8[(u1−0.5)2+(u2−0.5)2])

e(8[(u1−0.2)2+(u2−0.7)2]) + e(8[(u1−0.7)2+(u2−0.2)2])

(28)
For the approximation, 900 equally distributed, noise-free data
samples are generated.

Goal of the modeling was to achieve an NRMS error less
than 0.05. With LOLIMOT, 21 local linear models are needed,
while the SUHICLUST algorithm could achieve the same
accuracy with 10 local linear models, and using the Anfis
algorithm the same result is obtained with 16 local models, see
Fig. 8. In this case the function genfis1 is used, which actually
does the grid partition on the data without clustering. The
second function that can be used to generate a fuzzy inference
system inside the Anfis toolbox in Matlab is genfis2, which
uses fuzzy subtractive clustering applied to the data. The rule-
extraction method first uses the subclust function to determine
the number of rules and antecedent membership functions and
then uses a linear least-squares estimation to determine each
rule’s consequent equations. It does not provide the algorithm
that will give the best possible clustering for a certain number
of clusters. For this reason a comparison of all the algorithms
is rather difficult.

Next, the comparison between SUHICLUST and LOLIMOT
is made on a 3D set of data where the process nonlinearity
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Step 1. Initialization of the algorithm.
- Transformation of the row data set Z̃ −→ Z or z̃ −→ z .
- Definition of SUHICLUST algorithm parameters:

- The smoothness parameter α , (α = 1) .
- The maximum number of clusters Mmax.
- The tolerance for the approximation error NRMSEmax, (NRMSEmax = 0.05).

Step 2. Computation of the covariance matrix Σ0.

Step 3. Definition of the initial centers of clusters: v11 = δ1, v12 = −δ1.

Step 4. GK clustering algorithm on whole data set Z̃ −→ cluster centers c1 and c2, M = 2.

repeat

Step 5. Computation Φi(z̃), k = 1, ..., N , i = 1, ..., M .

Step 6. Computation θ̂i and θ̂i0, i = 1, ..., M using local LS.

Step 7. Computation σqi, i = 1, ..., M .

Step 8. For the cluster with the largest local error measure σqi (i=p) defines the initial cluster centers:

vp1 = cp−1 + δp ,
vp2 = cp−1 − δp .

Step 9. GK clustering using only the splitting-cluster’s data results in cluster-centers cp1 and cp2.

Step 10. Definition of new initial cluster centers:

(v1, ...,vp,vp+1, ...,vMnew ) = (c1, ..., cp,1, cp,2, ..., cM ), Mnew = M + 1 .

Step 11. GK clustering using all the data results in the cluster centers ci, i = 1, ..., M , M = Mnew .

Step 12. Re-transformation of centers and fuzzy covariance matrices to the measured data set:

ci −→ c̃: c̃i = ci + c0, i = 1, ..., M ,

Σi −→ Σ̃i: Σ̃i = ΣiT, i = 1, ..., M .

Step 13. Calculation of Φi(z̃(k)), k = 1, ..., N , i = 1, ..., M .

Step 14. Local WLS estimation to calculate θ̂i and θ̂i0, i = 1, ..., M .

Step 15. ŷ(k) =
∑M

i=1(θ̂T
i x̃(k) + θ̂i0)Φi(z̃(k)), k = 1, ..., N .

until NRMSE(ỹ, ˆ̃y) < NRMSEmax or M = Mmax

TABLE I
PSEUDOCODE OF SUHICLUST ALGORITHM

stretches along the diagonal of the input space. Consider the
Hyperbola function

y =
1

0.1 + 1
2 (1 − u1) + 1

2 (1 − u2)
(29)

This function shall be approximated with a normalized root-
mean-squared error of less than 5 percent. With LOLIMOT,
11 local linear models were needed, while the SUHICLUST
algorithm (axis-oblique partitioning strategy) could achieve the
same accuracy with 5 local linear models, see Fig. 9.

Table II summarizes the results with SUHICLUST com-
pared to LOLIMOT, FMID, ANFIS and DENFIS. It comes out
that SUHICLUST shows the best modeling results. In order
to achieve a NRMSE below 0.05 SUHICLUST needs for the

Mars-benchmark only 10 and in the case of the Hyperbola-
benchmark with two inputs 5 local linear models whereas
ANFIS needs 16 and 9 local models in both examples. The
second best performing method is FMID with 13 and 9 local
models, respectively. With the default configuration, DENFIS
produced 90 local models in both cases which is not adequate
in this comparison.

B. Analytical example II

In this example, the data set is enlarged up to a five-
dimensional input space for the Hyperbola benchmark. The
generalization of this function

y =
1

0.1 + 1
p

∑p
i=1(1 − ui)

(30)
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Fig. 8. Top left: Process data. Top right: Convergence behavior of LOLIMOT,
SUHICLUST and ANFIS. Bottom left: The contours of SUHICLUST parti-
tions drawn at a normalized membership degree of 0.5. Bottom right: The
partitions generated with LOLIMOT drawn at a normalized membership
degree of 0.5.

TABLE II
ERRORS FOR MODELING THE MARS- (28) AND HYPERBOLA-FUNCTION

(29)

Method Mars Hyperbola
(NRMSE / # LMs) (NRMSE / # LMs)

SUHICLUST 0.0462 / 10 0.0412 / 5
LOLIMOT 0.0479 / 21 0.0498 / 11
FMID 0.0473 / 13 0.0499 / 9
DENFIS 0.0679 / 90 0.0930 / 90
ANFIS 0.0411 / 16 0.0390 / 9

shows that the hierarchical axes-orthogonal strategy roughly
increases the needed number of local models exponentially
with the input-space dimensionality. In the meantime, the
SUHICLUST strategy is independent of the input-space di-
mension and requires only 5 to 6 local linear models to reach
an error measure of 5 percent; the axes-orthogonal strategy
requires 5, 11, 25, and 59 local linear models for the 1-, 2-,
3-, and 4-dimensional cases, see Fig. 10. The dimension of the
input space equals to the parameter p in Eq. 30. Table III shows
the number of models and the computation time up to the 6-
dimensional (Eq. 30; p = 2, ..., 6) case, for the application
of LOLIMOT, SUHICLUST and Gustafson-Kessel product-
space clustering. The results of LOLIMOT and SUHICLUST
are generated by running each algorithm only a single time.
For a comparison, the Gustafson-Kessel clustering procedure
is called ten times and the best result is selected. In each
run the number of clusters is iteratively increased until the
error measure is achieved. The cluster centers are randomly
initialized. The ANFIS algorithm breaks down already in the
case with the three-dimensional input space.

C. Pharmaceutical data set

In this section the absorption spectra of the protonation
equilibria of Silychristin with a dependence on different wave-
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Fig. 9. Top left: Process (light) and model (solid) output with SUHICLUST.
Top right: The convergence behavior for LOLIMOT and SUHICLUST. The
membership functions (bottom left) and normalized membership functions
(bottom right) of the models constructed by the proposed axes-oblique
algorithm (SUHICLUST).
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Fig. 10. The convergence behavior for 1-, 2-, 3-, and 4-dimensional
approximation problem with the SUHICLUST (upper) and the LOLIMOT
(lower) partitioning strategy.

lengths u1[nm] and pH (u2[pH]) at a temperature of 25oC is
discussed. The problem of absorption spectra is presented in
detail in [40] where the data set is simulated without noise. In
this investigation, noise is added to the data (σn = 0.01).
The results of modeling with SUHICLUST are shown in
Fig. 11 with the data, the contour diagram of the normalized
membership functions for Φi(·) > 0.75 with centers of the
clusters (+), the 3D error surface and the 3D presentation of
the normalized membership functions.

The comparison of the investigated methods is given by the
variance accounted for (VAF) criterion which is defined as
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TABLE III
RESULTS OF THE DEMONSTRATION EXAMPLE∗

input dimension 1D 2D 3D 4D 5D 6D
# data points 15k 14.9k 15.6k 14.6k 16.8k 15.6k

LOLIMOT 0.3s / 1.4s / 11.6s / 85.6s / 494.2s / 1084.7s /
5 LM 11 LM 25 LM 59 LM 114 LM 159 LM

SUHICLUST 35.5s / 33.2s / 51.1s / 48.0s / 65.1s / 60.5s /
5 LM 5 LM 6 LM 6 LM 6 LM 6 LM

Product-space 6.8s / 37.7s / 56.7s / 43.1s / 75.0s / 102.5s /
Clustering 5 LM 7 LM 9 LM 11 LM 14 LM 14 LM
∗ Computed with Intel Core 2 processor, 1.83 GHz, 2 GB RAM
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Fig. 11. Data set of absorbtion spectra of Silychristin approximated by
SUHICLUST. Top left: 3D data set. Top right: Contour diagram of the
normalized membership functions for Φi(·) > 0.75 with centers of the
clusters (+). Bottom left: Approximation error. Bottom right: Normalized
membership functions Φi(·).

follows:

V AF (ỹ, ˆ̃y) = 100

(
1 −

∑N
k=1(ỹ(k) − ˆ̃y(k))2∑N

i=1(ỹ(i) − ȳ)2

)

ȳ =
1
N

N∑
k=1

ỹ(k) (31)

The relation between the NRMSE and VAF criteria is the
following V AF = 100 · (1 − NRMSE2) . The ideal case
of modeling is given by NRMSE = 0 or V AF = 100 .

With SUHICLUST 16 rules were generated in order to get
the V AF value V AF (y, ŷ) = 99.07. The V AF measures for
each local model show that the modeling with SUHICLUST
gives a very good local approximation. In order to calculate
the local V AF measure, the data is locally weighted with the

corresponding validity function

V AFi(yi, ŷi) =

= 100

(
1 −

∑N
k=1(y(k)Φi(u(k)) − ŷi(k)Φi(u(k)))2∑N

k=1(y(k)Φi(u(k)) − ȳi)2

)
(32)

ȳi =
1
N

N∑
k=1

y(k)Φi(u(k))

The corresponding local V AF measures for all 16 local
models are calculated as 99.2813, 99.6805, 99.6395, 99.2821,
99.1864, 99.6094, 99.6318, 99.8836, 99.4744, 99.8028,
99.9438, 99.8680, 99.9205, 99.8939, 99.7971 and 99.8626.
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Fig. 12. Partitioning for the absorption spectra data set of silychristin
approximated by SUHICLUST (top row) and GK clustering (bottom row),
with Φi(·) > 0.75. With both algorithms two runs were performed. In
contrast to GK clustering, SUHICLUST is deterministic and delivers almost
identical results in both runs.

The most important advantage of the proposed SUHI-
CLUST algorithm, besides the accuracy of the global and
local models, is the fact that the algorithm always converges
practically to the same results. This is shown in Fig. 12, where
two different runs for the same problem are made. It is shown
that the centers, the contours and the V AF measures are
almost the same. The same experiment is conducted using the
GK clustering algorithm by fixing the number of clusters to 16.
It is shown that due to the random initialization the results of
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TABLE IV
RESULTS FOR MODELING THE PHARMACEUTICAL PROCESS

Method # LMs Error
(NRMSE)

SUHICLUST 10 0.0822
LOLIMOT 24 0.0984
FMID 15 0.0985
DENFIS 29 0.1536
ANFIS 16 0.0899

the algorithm become very different. In particular, the resulting
centers are quite different and also the V AF measures show
an initialization-dependent algorithm. The absorption data set
is also modeled with ANFIS. In this example genfis1 with
Bell functions is used. Each input is divided into 4 sub-
spaces which delivers 16 local models in the two-dimensional
product-space. The results of the modeling are given as
follows: The overall V AF measure shows a very good result
(V AF = 99.01), but the corresponding local V AF measures
show that the corresponding local models do not estimate
the local behavior adequately. The corresponding local V AF
measures in this case are, for all 16 local models, calculated
as 95.9995, 94.5331, 92.9437, 96.8007, 94.1893, 96.9742,
87.3911, 85.0560, 91.6943, 81.7055, 93.8893, 96.9630,
90.9209, 81.0264, 63.8170 and 79.0808. These values show
that the overall approximation applies very well, but the fit
of the local models is not appropriate. This means that the
approximation is distributed between overlapping membership
functions. The procedure is repeated with the genfis2 function
in Matlab, which involves subtractive fuzzy clustering. In this
case the algorithm results in 149 rules, which is again a
number that is not comparable with other algorithms.

For the sake of completeness, Table IV shows the modeling
results of the five investigated algorithms. The goal was to
achieve an error less than 0.1 with as less local models as
possible. Again, SUHICLUST shows the best results.

D. Modeling an engine characteristic map

Another application example is the modeling of an engine
characteristic map. The investigated highly non-linear process
consists of 433 samples where the engine torque in [Nm] is
measured as a function of the engine speed in [rpm] and the
injection mass in [mg]. In order to compare the results the
same data set is used like proposed in [41] and [42]. In these
citations an extension of LOLIMOT with the application of
genetic programming, LOLIMOT GP, is proposed. Further-
more, the algorithm was implemented with a variable split
ratio, LOLIMOT GP-V, i.e. the partitioning is more flexible
than with the classical LOLIMOT approach.

In this experiment SUHICLUST is compared to LOLIMOT,
LOLIMOT GP and LOLIMOT GP-V. Additionally, the algo-
rithms ANFIS [21] and DENFIS [44] are considered for the
comparison. Goal of the modeling with SUHICLUST, ANFIS
and DENFIS was to reach at least the same error (NRMSE)
as LOLIMOT GP-V which was the best performing algorithm
in [41]. The results in Table V show clearly the advantage of

TABLE V
RESULTS FOR MODELING THE ENGINE CHARACTERISTIC MAP

Method # LMs Error
(NRMSE)

SUHICLUST 8 0.0602
LOLIMOT 15 0.0694
FMID 15 0.0648
LOLIMOT GP 11 0.0691
LOLIMOT GP-V 14 0.0685
DENFIS 22 0.0734
ANFIS 25 0.0452

SUHICLUST. All results were visually monitored with respect
to overfitting.

The best result with LOLIMOT GP-V was a NRMSE of
0.0685 with the usage of 14 local linear models (LMs).
SUHICLUST needs only 8 local linear models to achieve the
same modeling accuracy. ANFIS reaches with 5 rules per input
axis a slightly better error value, but then the model consists of
25 local linear models. Obviously, this leads to 75 consequent
parameters whereas SUHICLUST has only 24 local model
parameters. The results with DENFIS are comparable to the
results with ANFIS. Unfortunately, it is not possible to preset
the number of local models with DENFIS. Thats the reason
why the error is slightly worser than with LOLIMOT GP-V.

E. Comparison on Automobile MPG benchmark

In [5] the proposed, modified Gath-Geva (GG) Clus-
tering algorithm is tested on the well known Automo-
bile MPG benchmark data set that is available from
the UCI Repository of Machine Learning Databases
(http://archive.ics.uci.edu/ml/ ). Furthermore, they used the
FMID toolbox [6] and ANFIS for the comparison.

As proposed in [5], also the reduced data set with 392 sam-
ples is used in this comparison. The following input variables
were chosen for the prediction problem: u1: displacement; u2:
horsepower; u3: weight; u4: acceleration; and u5: model year.
Goal is to predict the fuel consumption of an automobile.

In order to compare the results of SUHICLUST with the
results in [5] the data set is randomly split in 50% for training
and 50% for testing as it was done in the cited paper. Then
the FMID model is trained with different train and test sets
a several times until we got a similar solution like shown in
[5]. The chosen data sets for training and testing lead to an
RMS error of 2.76 for training and 3.02 for testing. In [5] the
results were 2.67 and 2.95, respectively. As shown in Table VI,
SUHICLUST offers, like the FMID toolbox and the modified
GG algorithm, very good generalization properties. The RMSE
values of SUHICLUST with 4 rules are almost the same like
the results with the modified GG culstering.

Next, the extrapolation behavior is tested on the same
problem as stated in [45], as it is performed in [5]. The
best SUHICLUST result is obtained with 5 local models. For
training an RMS error of 2.82 and 2.83 for testing is observed.
The best solution of the modified GG algorithm in [5] is 2.77
and 2.95 which is almost the same performance.

In [5] it is pointed out that the ANFIS model in [45] has
severe problems with sparse data regions and, therefore, the
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TABLE VI
PERFORMANCE COMPARISON ON THE AUTOMOBILE MPG BENCHMARK

Method Training Testing
(RMSE) (RMSE)

SUHICLUST 2.75 2.83
Mod. GG [5] 2.72 2.85
FMID [5] 2.67 2.95
ANFIS [5] 1.96 91.35

ANFIS model spuriously estimates higher MPG for heavy
cars. Figure 13 illustrates the prediction surface of the un-
derlying SUHICLUST model. It shows that the extrapolation
behavior of the SUHICLUST model suits to the data. In
consideration of this figure, it should be mentioned that an
interpretation of the resulting rules is only possible, if the
partitioning is analyzed for a certain cut in the input space.
But this is the price to be paid for the higher amount of model
quality.
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Fig. 13. Prediction surface (left) compared to all data samples and
partitioning (right) of Automobile MPG model.

VI. CONCLUSIONS

This contribution introduces the algorithm SUHICLUST
which stands for SUpervised HIerarchical CLUSTering and
provides a partitioning algorithm that combines a super-
vised, heuristical tree-construction algorithm with unsuper-
vised, highly flexible product-space clustering. Key feature
of SUHICLUST is its easy usability. The algorithm delivers
reliable, deterministic and well generalizing results with a par-
simonious partitioning. Easy-to-use means that the algorithm
produces reasonable results while the user only has to set
either a threshold for the maximum number of local models
or a value for the maximum allowed global model error. The
performance of this new approach is shown in comparison with
state-of-the-art algorithms and on both analytical illustration
examples and benchmark data sets. The investigated bench-
mark results with SUHICLUST outperform existing results
from the literature.
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Luka Teslić received the B.Sc. degree in electrical
engineering from the University of Ljubljana, Slove-
nia, in 2006. He is currently pursuing a Ph.D. degree
in mobile robotics at the University of Ljubljana.
His current research interests include mobile robot
localization and map building and fuzzy system
identification.
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